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Variational methods and nonlinear quasigeostrophic waves
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In this paper, we discuss zonally periodic steady quasigeostrophic waveg-lane channel, by

using variational methods. A class of steady quasigeostrophic waves are determined by the potential
vorticity field profile,g(-), which is a function of the stream function. We show that zonally periodic
steady quasigeostrophic waves exist when the bottom topography and the potential vorticity field are
bounded. We also show that these waves are unique if, in addition, the potential vorticity field
profile is increasing and passes through the origin. Finally, we demonstrate that the zonal periodic
wave in the case witly(y)=arctan(y) is nonlinearly stable in the sense of Liapunov, under a
boundedness condition for the potential vorticity field, or equivalently, under suitable conditions on
the bottom topography3 parameter, and zonal peridd © 1999 American Institute of Physics.
[S1070-663(199)00804-1

I. INTRODUCTION of zero Rossby number, i.e., at asymptotically high rotation
) . o o rate, for prepared initial data. This convergence is pointwise

~ Geophysical fluid dynamicists often use simplified par-¢y; finite time and in a certain Sobolev norm for space.
tial differential equation models which are intended t(_) Cap-  gteady patterns correspond to permanent geophysical re-
ture th_e key feat_ures of large scale_ ph_enomena_ and filter Okffimes and they have been studied in, e.g., Ref. 2, p. 221, Ref.
undesired fasthigh frequen_c)/ osm_llatlons. An _|mportant 1, p. 93, Meacham and FlietP There has also been much
example of such azparual differential equation is the quasiesearch on stability of steady states of the quasigeostrophic
geostrophic mode; equation; see, for example, Holet al.,” Benziet al.,® McIn-

9i+J(4,q) =0, (1.))  tyre and ShephertiMu,'***and Ripa'®

The methods of functional analysis have often been ap-
plied effectively in geophysical fluid dynamics. See, e.g.,
1 Bourgoise and Beal¥ and Babinet al1*!*for recent inter-

q=Ay— — Y+ By+ h(x,y), esting results using this approach. This paper shows exis-

R tence, uniqueness, and nonlinear stability of zonally periodic

$(x,y,t) is the stream functionx andy are coordinates in (i-e., periodic in eastward directior) steady quasigeo-
the zonal and meridional directions, respectiveyjs the  Strophic waves under suitable conditions on the bottom to-
Rossby deformation radiughe distance over which the Pography and the potential vorticity field, by applying well-
gravitational tendency to render the free surface flat is balknown variational methods in direct calculations, together
anced by the tendency of the Coriolis acceleration to defornyith results from nonlinear partial differential equations
the surfacg B3>0 is the meridional gradient of the Coriolis theory, that illustrate these methods.
parameter, anti(x,y) is the bottom topography. Moreover,
A is the Laplacian operator in the,y plane andJ(f,g)
=f.0,—f,0x is the Jacobian operator. This same equatio

whereq is the potential vorticity

f!- STEADY QUASIGEOSTROPHIC WAVES

also models plasma drift wavés_. _ Steady quasigeostrophic waves satisfy
The quasigeostrophic equation may be derived as an ap-
proximation of the rotating shallow water equations by the ~ J(¥,9)=0. (2.2

conventional asymptotic expansion in small RossbysinceJ(y, — (1/R?) ) =0, this equation leads to
number* Schochéet has recently shown that the shallow wa-

ter flows converge to the quasigeostrophic flows in the limit ~ J(¥:A¥+By+h(x,y))=0, 23

which implies thatyy and A ¢+ By +h(x,y) are functionally

dAuthor to whom correspondence should be addressed. Electronic maiﬁiepen.d'ent- We'as'sume.thls'depen'dence may be expressed as
duan@math.clemson.edu; F&864656-5230. a semilinear elliptic partial differential equation
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uxt Pyy T BYTh(X,Y)=09(4), 2.9
by | =5 T oy +hoy) - o gdxdy
whereg( ) is an arbitrary smooth function. This is related to
the fact that steady states are constrained energy minima. =0, V¢e H%, (3.7

This equation also says that the Rossby deformation radluvsvhere the lefi-hand side defines a semibilinear form.

does not directly play a role in the setup of this class of We use standard variational methotis discussed in

. _ 2 — .
‘j’;eidli V:_agssfr:?iey; (;/;’ théllleﬁt-)hlg% d 2&62}; 4??:?:1'2/ Ref. 18, and references thergtn prove existence of zonally
oty , . - . .
potential vorticity with infinite Rossby deformation radius. periodic Waves. To this end we show t h%.‘//) is weakly
lower semicontinuous and coercive, which impl{eg Theo-

We just call it the potential vorticity in this paper. Ongé&y) . LT c

has been determined by specifying the potential vorticity atem 1.2*|n Ref._l;?thatﬁ(z/{) attains its infimum. Thg mini

one point on each streamliné2.4) determines the stead mizer * for this infimum is a weak zonally periodic solu-
P : Y tion of (2.4). Recall that £(¢) is called weakly lower

flow (Ref. 1, p.93. Due to potential vorticity conservation, semicontinuous, if for any weakly convergent sequeiizg
the boundedness gf /) means boundedness of the potential: ' y y 9 q

1
vorticity field. In the following we assume thg(y) may be in Hx, there holds
chosen and study zonally periodic steady flows. L(p)<Iliminf L(y,).

n—o

Ill. VARIATIONAL METHODS AND TOPOGRAPHIC L(p)—= as ||y,

EFFECT
) ~ thenZ(¥) is called coercive.
We consider Eq. (2.4 on the zonal domain Bonaet al® considered steady periodic waves in strati-
(B—channe), fied flows by variational methods. However, their results are

valid for a different class of nonlinearity and do not apply to

—o<x<o, 0<y<l1, the present problem.

This problem has a variational principlé£=0, with La- In showing that the Lagrangiaf(¢) is weakly lower
grangian function semicontinuous, we first rewrite it as

1

1,1 L(p)==(Vp,Vip)—(By+h
c- | [5¢§+§¢§—(ﬁy+h(x,y))w+6(w) dxdy, (=3 (V4V¥) = (By+hixy).¢)
(3.9 v

+f J g(s)ds|dxdy. (3.8

WhereG(t//)=f0‘/’g(s)ds. We seek a solutiow that is peri- 0

odic in zonalx direction and satisfies homogeneous Dirichletgr the second term of the right-hand side to make sense, we

boundary conditions in meridional direction, namely,yy  Jocme thaBy + h(x,y) is in L2, and this is possible when,

=0 aty=0 and%/=12. , say,h(x,y) is bounded and-periodic inx. It is easy to see
We denotel7=L7((0,T) x(0,1))as theiloert space of 5 the first and the second termify) are weakly lower

gquare-integrable functions ermich filre periodixiwith pe- semicontinuous, noting the fact that the dual sparfg) (is
riod T>0. We also denoteHy=H=((0.T)x(0,1))as the  qhained in the dual spacdi})’ and that (2)' can be

subspace of the usual Sobolev spatH((—=,=)X(0,1))  jjentified with L2 itself. Now consider the third term. We

consisting of functions which are periodic inwith period ¢ ther assume that(y) is bounded|g(#)|<M,. Note that
T>0 and satisfy homogeneous Dirichlet boundary condi-

tions aty=0 andy=1. Similarly we can defin¢i?,L¥ for _ J fd’n _f J‘/’

positive integergp. Moreover,||-|,[-| are the usual norms I'mn'ifm 0 g(s)ds|dxdy 0 g(s)ds|dxdy

in HT,L2, respectively. Note that since the Poincane

equality holds:®” the expression f(V -V ydxdy)*? is an o f f%

equivalent norm inH3. Here and hereafter,fdxdy _I'mn'T; " g(s)ds|dxdy

= [/ sdxdy. Moreover,

=lim inf f 9(¢+ 6(¢n— ) (¢hy— ¢p)dxdy

(W1:W2):f wiwodxdy n—ee

is the usual scalar product Ir?.. = —lim inf le |, — w|dxdy=0, 3.9
A weak zonally periodic solutiog(x,y) in H% for (2.4 n—e

is defined to satisfy where we have used the mean value theorem of integral cal-

i ¥n _
(VU Vd) +(By+h(x.y), d)— $)=0, Ve HL culus to write [ "g(s)ds=g(y+ 6(sn— ) (¢n—4) for
(V. V) +(By*h(xy).4)=(8(4).¢) dehy some @ in (0,1). Thus the third term inC(y) is weakly
(3.6 lower semicontinuous.
or These calculations prove the following:
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Lemma 1: If the bottom topography h(x,y) and potentialfield g() is a smooth function. Assume that the bottom to-
vorticity field g@) are bounded, and moreover h(x,y) is pography h(x,y) and the potential vorticity field/§(are

T-periodic in X, then the Lagrangian functiai(y) is weakly
lower semicontinuous in H
Next we show coercivity.

bounded.
(i) If h(x,y) is T-periodic in x, then there exists a smooth
zonally periodic steady quasigeostrophic wave of period T;

Lemma 2: Under the assumption of Lemma 1, the Lain particular,

grangian functionZ(y) is coercive in I—%
Proof:
|[h(x,y)|<M,, we have the estimate

| teay+houynwiaxdy=(g+my) [ Iplaxay
<Cj/e+Cyelyli, (3.10

by the Cauchy-Schwarz, Youngs, and Poindaegjualities,
whereC,,C,>0 are constants depending ghM,,T, and
€>0 is to be determined. Similarly,

f Ujg(S)dS

Thus, we have

L) =2V, Vi) —(By+h(x,y),$)
|

1
5~ Coe— C46> l4ll3—Cyle—Czle,  (3.12

dxdy$|\/|1f |y|dxdy<Cs/e+Cyel 5.
(3.1D

14
f g(s)ds|dxdy
0

=

where we can take>0 such thatt— C,e—C,e>0. There-
fore, the estimat€3.12) implies that

L()— as [[ylli—e,

(ii) If h=h(y) is independent of x, then, for any>T,

Since the bottom topography is bounded,there exists a smooth zonally periodic steady quasigeo-

strophic wave of period T.

IV. UNIQUENESS AND NONLINEAR STABILITY
OF ZONAL PERIODIC PATTERNS

In this section, we discuss the uniqueness and nonlinear
stability of zonally periodic steady quasigeostrophic waves.
We assume thag(¢) is increasing and passes through the
origin, i.e.,g(0)=0. This implies that

(4.19

(9(s1) —9(s2))(s1—5,2) =0, (4.15

for all s. We can now use a result in ZeidférCorollary
26.13, p. 572, to conclude that the zonally periodic steady
quasigeostrophic waves claimed in Theorem 1 are unique.
Thus, we have the following result:

Theorem 2 Assume the conditions in Theorem 1. More-
over, assume that the potential vorticity field/f(s increas-
ing and passes through the origin (g€e)), as well as being
bounded.

Then, the zonally periodic steady quasigeostrophic
waves whose existence is shown in the proof of Theorem 1
are unique.

For example, potential vorticity fieldg() satisfying
the conditions of Theorem 2 ay ) =tanh(y) and g(v)
=arctangy). Note that tanhg) is increasing, tanh(G30,

g(s)s=0,

i.e., £(¢) is coercive. This completes the proof of Lemma 2.and arctang) is increasing, arctan(&)0.

By Theorem 1.2 in Ref. 18, we conclude there exists a

Under a slight additional condition, the corresponding

weak solutiony(x,y) in HX of (2.4), i.e., there exists a weak unique zonally periodic steady quasigeostrophic waves can

zonally periodic steady quasigeostrophic wave.
Actually this weak solutiony(x,y) is smooth(with con-

tinuous second order derivatiyeas along ash(x,y) and

g(y) are smooth. In fact, it follows from thé&P-elliptic

theory” that ¢ is in HP for any p<w. The Sobolev embed-

ding theorent’ implies that is also in the Hider space
cl, and, furthermore, the Schauder thédyields thaty,
is in fact in C2<,

In conclusion, we obtain the following theorem:

be shown to be nonlinearly stalfie the sense of Liapungv

For existencgTheorem 1 and uniquenes§Theorem 2 of
zonally periodic steady quasigeostrophic waves, we have as-
sumed thaig(-) is bounded and increasing. The nonlinear
stability result(in the spirit of Arnold’s first theoremin
Holm et al.” requires that the derivative of the inverse of
g(-) to be bounded between two positive constants. This
implies that the derivative ofj(-) itself is also bounded
between two positive constants, which further implies that

Theorem 1 Consider the steady quasigeostrophic the potential vorticity fieldy(-) is unbounded. Thus the non-

waves satisfying

Unxt ¢yy+ By +h(x,y)=9(#),

on the zonal domaiB-channel)

(3.13

—ox<o, 0<y<1,

linear stability result in Ref. 7 does not directly apply in our
case. Note also that some other nonlinear stability results for
steady quasigeostrophic waves are in the spirit of Arnold’s
second theorem, which requires that the inverse ¢and
thus g itself) to be decreasinge.g., Refs. 9—12does not
apply to our case either.

However, by following Holmet al. 2’ we modify the in-

where ¢/(x,y) is the stream function satisfying the homoge-verse ofg (or g itself) so that it satisfies the nonlinear stabil-

neous Dirichlet boundary condition aty0 and y=1; >0 is

ity conditions in Holmet al,” and thus we can still show

the meridional gradient of the Coriolis parameter; h(x,y) is nonlinear stability, under suitable conditions on the bottom
the smooth bottom topography; and the potential vorticitytopographyh(x,y), B8 parameter, and period.
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We illustrate this idea in an example with the potentialwherea,,b;,a,,b, are appropriately chosen constants.
vorticity field g(#)=arctan(). As we remarked above, in Since C and C coincide on the interval
this case, we have a unique zonally periodic steady quasigepmin q,,max q], it follows that i, is a critical point of

strophic wave of periodT, o(X,y), when topography Hz(). Moreover,—C”" is bounded between two positive
h(x,y) satisfies the conditions in Theorem 1. In the follow- constants

ing we find sufficient conditions so that,(x,y) is nonlin-

early stable. 1 =
0< =-C"(s
Recall that co(m/2 —maxcy,C,)) (=)
Ao = ot By +h(x.y) =arctar o) (.16 - (4.20
-— y X,y)=arcta , . = ) :
0 R27° 0 cog(m/2—min(cy,C,))
or for all s.
Then we can use the nonlinear stability result in Holm
Yo=tan A go— (1/R?) o+ By+h(x,y)). (4.17  etal for (multilayen quasigeostrophic steady flows, or fol-

low the argument in Holmet al,?° to conclude nonlinear
Note that C!/ds)t?”(SF.[1/°°§(S)]>0 (for —m/2<s  gtapility for the unique zonally periodic steady quasigeo-
<r/2), but this derivative is not bounded between two POSi~gtrophic waves claimed in Theorem 2. Note that for the pe-

tive constants. _ _ riodic zonal channel here, the argument in Ref. 7 still goes
As in Ref. 20 we consider the conserved functional through in our case. See Benet al® for discussions on

1 1 zonal periodic boundary conditions. Therefore we have the
Z(V)2+ —y2+C(q) |dxdy,  (4.18 following result:
2 2R? Theorem 3 Assume that the bottom topography h(x,y)
satisfies the conditions in Theorem 1 and consider the case
where the potential vorticity(x,y)=A¢— (1R?) ¢+BY  with the potential vorticity field x)=arctan(). By Theo-
+h(x,y), andC(q) is a conserved quantity called a Casimir rem 1 and Theorem 2, there exists a unique zonally periodic
function. To complete the nonlinear stability argument, We(with period T) steady quasigeostrophic wawg(x,y) with
need to choos€(q) so thaty is a critical point ofHc(#),  the corresponding potential vorticityox,y).

Hc(¢)=J

which requires that C(q)=—f{g '(s)ds, and that If the potential vorticity field g(x,y) takes values in a
—C"(q)=(g™")’ is bounded between two positive con- closed interval within (m/2), (w/2)), the domain of
stants. definition for ¢ %(s)=tan(s), then the unique zonally
In the caseg(s)=arctan§) we have periodic quasigeostrophic wave is nonlinearly stable (in the
. sense of Liapunov) in the nornf[(V)2+ (1/R?) ¢?
C(s)z—fotar(s)dSZIog(|cos(s)|), 4.19  +(A%p)%]1dxdy.

We remark that, although the nonlinear stability condi-
tions are in terms of potential vorticity, they equivalently put

for __Tr/ 2<s<ml2. So C(s) is cor_wex dOX“ nward, but constraints on the bottom topographg, parameter, and
C"(s) is unbounded below. We modif@(s) to C(s) sothat ,5ng periodT.

—C"(s) is bounded between two positive constants agd
is a critical point ofHz( ).

To this end, we assume that the potential vorticityy piSCUSSIONS
do(x,y) corresponding to the zonally periodic steady state
takes values within € #/2, w/2), the domain of definition We have found conditions for the existence, unigueness,
of tan(s). We denote thatqy(x,y) takes values in and nonlinear stability of zonally periodic steady quasigeo-
[— (7/2) + ¢4, (w/2) —c,], where 0<c;,c,<w/2. Actu- strophic waves in g-plane channel. Namely, these waves
ally, this adds a condition on the bottom topograpify,y)  €xist and are unique, provide@) the bottom topography
and8; see(4.16). With this assumption, we can then modify h(X,y) is bounded, andii) the potential vorticity fieldy()
C(s) by cutting it off outside — (7/2) +ci<s< (7/2) is bounded, andfor uniquenessthe functiong is increasing
—c,, and patch two quadratic polynomials smoothly and passes through the origin. Moreover, the zonal periodic
(matching the first and second order derivatives end wave in the case witly(y) = arctan() is shown to be non-

pointss= — (7/2) +c¢,, (7/2) —c,. Namely, we define linearly stable in the sense of Liapunov, under a bounded-
1 - ness condition for the potential vorticity field for this zonal
- &+asth;, s<s—=+¢ periodic wave, or equivalently, under suitable conditions on
2 cod(—ml2+cy) 2 the bottom topographyg parameter, and zonal periot
_ - - This stability analysis can also be performed for the case

C(s)={ C(s)=log|cogs), HOSSS5 0 : g(y)=tanh() or other cases.

We also remark that if the bottom topography is inde-

1 T endent of zonal directiolfy=h(y), then(2.4 becomes
s2+a,s+b,, s=5-C; P m=h(y) 24

| 2cod(mi2—c) Yot gyt BY+(Y)=0(1). (5.20

-2
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